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Part 1: Introduction to Ensemble models



An Introduction to Ensembles:
e Basic problem: Function estimation with data
e Model is
y = f(x) 4+ noise

with
— y a one dimensional variable
— x a p-dimensional variable
— Observed data are N pairs (z1,y1),..., (N, YN).
— f(x) estimated using the observed data.

e Ensemble models assume that f(x) is actually a sum of m
(often many) functions:

flz) =g1(x) + go(x) + ... + gm(x)
— Examples: Linear model, Generalized Additive Model, MARS,
Neural net, ...

— Original ensemble motivation: we get a better prediction
by averaging a ‘“committee” of individual models (g;'s).
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An Introduction to Ensembles:

f(x) = g1(x) + g2(z) + ... + gm(x)
e In principal, the individual g;'s could be any model.
e In practice, they’'re often Trees.

number.of.ropoms< 6.941
|

percent.low.income>=14.4 number.of.rgoms< 7.437

14.96 23.35 32.11 45.1

e [rees have several advantages:
1. Selection of relevant X’s.
2. Able to represent interactions.
3. Can handle missing values, categorical X’s.



An Introduction to Ensembles:

f@) =g1(x) +go(z) + ... + gm(x)

e Each tree g; has parameters we must learn from the data:
— Tree structure (topology and splitting rules): T;

— Predictions in terminal node: M, (e.g. node constants
11, 1o, ..., iy if there are b terminal nodes)

flx) = g(z;T1, M1) + g(x;, T, M2) + ... + g(x; T, Mm)

e Simultaneous optimization of Ty, ...,Tm, M1, ..., My, infeasible.



An Introduction to Ensembles:
Estimation: “The algorithm is the model” - Breiman, 2001
Several ways to estimate T4, ...,Tm, M1, ..., Mm:

e Bagging (Breiman 1996), Bayesian Tree models (Chipman,
George, McCulloch 1998) and Random Forests (Breiman
2001):

— Use randomized training (data resampling/stochastic search)
to identify multiple trees that fit well.

— Prediction is an average across individual tree predictions.

e Boosting (Freund and Schapire 1997, Friedman 2001)
— has individual g; that fit poorly (weak learners)

— but they are chosen so that when combined they predict
well.

e Both classes of models produce

f(x) = g(x; T1, M1) + g(x;, T, M2) + ... + g(x; T, Mm)



Part 2: Does it work?: A
large empirical study

( “Bake-Off"”, conducted for Neural
Information Processing Systems
2006)
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Experimental comparison: 6 learners x 42 datasets

e Learners:

Random Forests
Boosting (Friedman’'s gradient boosting machine)
BART-default - (Bayesian Additive Regression Trees)

BART-cv (BART, but treat prior parameters like tuning
parameters via cross-validation)

Linear regression with lasso
Neural networks (single hidden layer)

e Datasets:

From Kim, Loh, Shih and Chaudhuri (2006)
Up to 65 predictors and 6806 observations

e Details:
— Train on 5/6 of data, test on 1/6

Learners tuned via 5-fold CV within training set.

— 20 Train/Test replications per dataset



Results: Root Mean Square Errors

Average test set RMSE across 42 datasets (after standardizing
Y):

N
RMSE = | Y (V; — f(z;))?/N
1=1

BART-CV: 0.5042
Boosting: 0.5089
BART: 0.5093
Random Forest: 0.5097
Neural Net: 0.5160
|_asso: 0.5896

Some comments:
e BART does quite well
e [reating BART like a machine learner only gives a modest
improvement.

e It's actually pretty surprising how close the different models

are.
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Results: Relative

Root Mean Square Errors

“Relative’” = for each replicate on each data set, we identify
best model, and all RMSEs are divided by the error of the best

model.

= "1.0" is best, “2.0" is a RMSE twice as large as best model.

BART-default
BART—-cv
Boosting -

Neural Net
Lasso -

Random Forests —

I @D O@ @O0 (OO0 O

I | | | | |
1.0 1.2 1.4 1.6 1.8 2.0
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Results: Relative Root Mean Square Errors

e [ he other ensembles may be doing well for different reasons:

— Boosting forces each learner to model different structure
in the data

— Random Forests use model averaging to reduce variability

e Neither ensemble gives any prediction inference.
— This will be our goal: combine the strengths of boosting
and random forests in a model that allows inference.
e Extra bonus(es):

— Bayesian machinery largely removes need for tuning model
parameters.

— Pointwise uncertainty in predictions.
— Uncertainty for the magnitude of the effect of a predictor.
— Diagnostics for model checking.
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Part 3: Bayesian Additive Regression Trees
(BART)

e Ensembles as a statistical model.
e Prior specification
e MCMC estimation
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Ensembles as a statistical model:
Bayesian Additive Regression Trees (BART)

Our data model is
Y = f(z) +¢ e~ N(0,07)
or more specifically,

Y = g(waTlaMl) + g(fI},TQ,MQ) + c e + g(xaTmaMm) + €.

with the errors being iid Normal(0, o2)

The parameters we have to estimate are:
e m Trees T7,15,...,Tm.

e m sets of terminal node parameters My, ... My, (with bj nodes
in tree j).
e A single scale parameter o for the residual variance.
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Details:
1. Prior specification
2. MCMC sampling of the posterior

One important point. The model
Y — g(.CE,T]_, Ml) + g(CIZ,TQ, MQ) _I_ <o + g(.CE,Tm, Mm) + €.
is different from Bayesian model averaging of a single tree model.

We are obtaining a posterior for a ‘sum of m trees’ model,
with a joint posterior on m trees and m terminal node parameter

vectors.

15



Prior specification:
Need to specify a prior on 1"s, M’s, and o.

e Assume prior structure:

p((Tla M1)7 (T27 M2)7 IR (T’n% Mm>,0')
— p(T]_?TQ) s 7Tm)p(M17M27 .. '7Mm | T17T27 <o ,Tm)p(O')

e Since the dimension of the M depends on the T, this condi-
tional structure is essential.

e \We simplify even further by imposing independence whenever
possible.

p(Th, T, ..., Tm) = | [ p(T})
p(M17M27 . '7Mm | T17T27 s 7Tm) — Hp(Mj | T])

p(M; | T;) = | [ (i | T5)
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Prior Specification:

Semi-automatic choices motivated by Empirical Bayes methods.
Basic ideas:

e 7”s: how big a tree is probable?
e 0. how much noise in the response?

e M's: How much can each individual tree contribute?
Clever trick: Make this depend on the number of trees.

e Number of trees could be a parameter, but we fix it instead.
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Prior Specification:
1. Residual variance o2
Prior for o is simplest and most important.

We use the standard conjugate prior:

e v determines spread of the prior
e )\ determines location of the prior
Instead of eliciting v, A directly we:

(a) Guess at an upper quantile of o, say 90% or 99%. Set
this equal to least squares linear regression estimate of o

(b) Choose v to give good spread of o prior.
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Prior Specification:

(a)
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Prior Specification:

2. Prior on tree structure 7T

e Basically a prior on tree
size*.

e Actual prior used in
examples later gives tree
Size prior in plot.

e NOTE that unlike
Boosting, we don't fix tree
depth. We put a prior on it
and let the data determine - —
tree depth. ‘ i ’ ) ’

400
|

300
|

200
|

100
|

prior on number of bottom nodes

e [ree size determines how many variables are used in each
“weak learner” g(x;T,M).

* Actually a distribution on whether you split, which variable you split on,
and the splitting rule, for each node.
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Prior Specification:
3. Terminal node parameters u;
e Suppose we have m = 200 trees.

e For any z, the prediction f(x) will be a sum of 200 u's, one
from each tree.
200

0=EBE(Y|2)=f) =3 wm
=1

1=

200
Var(9) = )  Var(u;) = 200Var(u;)
i=1
(assuming pu;'s independent given the trees)

e SO, we can specify how much we expect the mean of y given
x (i.e., ) to vary, and take

Var(u;) = Var(6)/200

sd(u;) = sd(6)/+200
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Prior Specification:
3. Terminal node parameters u;
e Assume u; is normally distributed, with mean O, and standard
deviation
range(Y)
sd(u;) = 27200
NOTE: The amount of shrinkage of the u's depends on the
number of trees (here m = 200).
e Each term g(x;T,M) will be “regularized” so it contributes
only a small part of the overall fit.

for 200 trees in sum

So the model is adaptively regularized in
several ways: Tree prior and terminal node

prior.
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MCMC Estimation:

Instead of explicitly maximizing the posterior, we simulate from
it, via Markov chain Monte Carlo (MCMCQC).

In a nutshell:

Let T(_j) be all trees except Tj, define M(_j) similarly.
Repeat k=1, ...,1000 (say)

e Repeat y=1,...,m times
— Metropolis-Hastings step: Draw T} conditional onY, T(_j),a
— Draw M; given Y,Tl,...Tm,M(_j),a

e Draw o given Y and all other parameters.

Note that the sample of T; at step k is actually a modification
of the Tj sample at step k£ — 1.
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MCMC Estimation:
Final prediction:
e Each sweep of algorithm yeilds a draw from the posterior of

f($> — g(QZ,T]_, Ml) + g(x7T27 MQ) + cee _I_ g(QZ,Tm, Mm)
e Average the draws - gives the posterior average of f(x).

e Uncertainty in f(x) is also available, from the posterior dis-
tribution on f(x).

Connections to other learning algorithms:

1. Bayesian Backfitting (Hastie and Tibshirani) is a similar MCMC
approach.

2. Like Boosting, each of our “weak learners” g(z; T}, M;) learns
structure that the other weak learners do not capture.

3. Like Random Forests and Bagging, we model average over
multiple draws of the sum of trees model.
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Part 4: Examples with Data (Simulated,
Boston, Active Learning)
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Simulated example: Friedman (1991)

y = f(z) +e e~ N(0,1)

where

f(z) = 10sin(rz125) +20(z3—.5)2 4 1024 4+ 525 + 0z5+ ... + 0z 10

(10 x's but only the first 5 matter)
N = 100 observations
BART settings:

e m = 100 trees

e o prior uses o from linear least squares regression as 90th
quantile, v = 3.

e [ree prior puts most probability on 2, 3 terminal nodes.
e Automatic choice of M = {u;} prior just discussed.
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Simulated example:

posterior for o

Training sample Test sample (red= 1 tree
predictions predictions '
blue=ensemble)
(a) (b) (c)
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< [ [ [ [ [ [ [ < [ | [ [ [ [ [ [ [ [ [ [ [ [ [
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 1000 3000 5000
in—sample f(x) out-of-sample f(x) mcmc iteration
e Chain converges quickly and mixes well.

Note that the model is not identifiable, but we are really only
interested in identifiability of predictions.
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Simulated example:

p = 20
dimensions

p = 100
dimensions

p = 1000
dimensions
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Simulated example:

Previous page: BART capable of extracting low-dimensional sig-
nal with many x's. (Even n < p, i.e. n = 100 observations in
p = 1000 dimensions!)

Also reasonable robustness to prior settings:
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Additional Goodies: The Boston Housing Example

e Goal: Predict neighbourhood house price using demographic
variables.

e Data:
— y=Ilog median house price in the region (the response)

— X is 13 predictors, measuring pollution, crime, house sizes,
commute distance, racial diversity, tax rates, etc.

e Common “benchmark’” problem.
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Additional Goodies: The Boston Housing Example

Posterior distribution on the number of terminal nodes of the

200 trees (actually a draw from the posterior).

Number nodes | 1 2 3 4 5 6
Relative freq (%) | 3.5 54.5 32.5 85 0.5 0.5

This can be interesting because

e a 1-node tree doesn’t contribute to the model
e a 2 node tree is a main effect for one variable
e a 3 node tree is a two-way interaction

o ... etc.

In this case, there seems to be mostly main effects and some
two-way interactions.

(still a somewhat dodgy way to measure interaction order)
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Additional Goodies: The Boston Housing Example
Relation to model diagnostics

e Consider predicting y. For each point, plot the posterior
interval width against traditional regression diagnostics (left:
leverage, right: Cook's distance).

e Influential points tend to have larger posterior intervals.

e Posterior gives information about influential points.

Cl width

0.20 0.25

0.15

0.10

0.20

leverage

0.30

Cl width

0.20 0.25

0.15

I I I I
0.02 0.04 0.06 0.08

Cook’s distance
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Additional Goodies: The Boston Housing Example
Partial Dependence Plots

e Want to measure the
effect of one or two z's
on f(x). ° X

e Basically we margin over
the other variables
(Friedman 2001).

e Full posterior inference X ° o
for such a plot is
straightforward.

2.9 3.0 3.1
|

log median value
2.6 2.7 2.8
X
(o]
>
>
x
>
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e Example: crime rate

Crime

e Almost all crime rates are in the 0-5 range.

e Bounds widen as we have less data (high crime rate).
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Active Learning
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Active Learning
The game we play:

Same “regression’” scenario as before: predict Y using X.

The difference is that we can sequentially choose the 2’s
at which we measure Y.

That is, we assume that all potential ='s are known, and we
need to choose which ones we measure Y at.

By “actively learning” (ie sequentially gathering data) we
hope to build a better model with less data.

This is essentially experimental design.

Much of the theory for design applies to linear models, here
we show how adaptive models can be used for sequential
design.
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Active Learning
Sketch of the active learning algorithm:

1. Select an initial design (i.e., initial set of observations) Xg
with ng points via some criterion.

2. Obtain response values Yy for data.
3. Build a model using data Dg = (Xg, Yo).
4. Repeat y=1,...,n:

(a) For each potential design point x; € candidate set C, cal-
culate the design criterion

(b) Select point x;+ with best design criterion yielding design
X, = (Xj_1,zp)t.
(c) Measure response at X, giving Y; = (Yj_l,yi*)T
(d) Build model M; using D; = (X},Y}).
Note:
e At the end of this algorithm, we will have ng+n observations.
e Details on calculation in 4(a) on subsequent pages.
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Active Learning
Two possible design criteria:

1. Maximize variance of predicted response (“ALM" - MacKay

(1992))
(where do I know the least about Y 7).

2. Maximize expected reduction in variance of predicted re-
sponse, averaged over a candidate set C (“ALC” - Cohn

(1996))
(what data point will improve my model’s predictions most?)

We'll use # 1 here
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2-D example (Gramacy and Lee 2006)

e [ woO predictors

e Function (right)
nearly constant in
75% of input space

e Initial SRS of 20
observations,
followed by adaptive
sampling of 100
observations.

e All observations on a
21 x 21 grid.

We'll make comparisons with Gramacy and Lee’'s “Treed Gaus-
sian Processes” (TGP)
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2-D example (Gramacy and Lee 2006)
Points sampled by BART and TGP:

BART adaptive sample
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Test-set MSE's (right) indicate
e Both select good samples
e TGP fits better (smooth)
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TGP adaptive sample
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3.66 15.96

0.35 2.84

0.40 2.93
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Active Learning

e [ his may look like a dead heat, but ...
— BART scales well to large n and large p.

— Ability of BART to discard irrelevant variables may be
handy.

— BART can handle categorical X's
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Summary and future work:
1. It is possible to have a flexible predictive model, but still use
it to make statistical inferences.
e [ here is some computational cost.
e Some derivations of models necessary.
e But it's worth it: Cross-validation not necessary.
2. Extension to classification: 2-class problem is immediate:

view binary outcome as corresponding to a latent continuous
variable.

3. We plan to do extension to exponential family (similarities
with Hastie and Tibshirani's Bayesian Backfitting).

4. Because we have a probability model, we can build in many
interesting features. (e.g., different response data types, hi-
erarchical models, outliers, modelling of o as well as u,...)
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